This work focuses on the efficiency of the knowledge distillation approach in generating a lightweight yet powerful BERT-based model for natural language processing (NLP) applications. After the model creation, we applied the resulting model, LastBERT, to a real-world taskclassifying severity levels of Attention Deficit Hyperactivity Disorder (ADHD)-related concerns from social media text data. Referring to LastBERT, a customized student BERT model, we significantly lowered model parameters from 110 million BERT base to 29 million-resulting in a model approximately 73.64% smaller. On the General Language Understanding Evaluation (GLUE) benchmark, comprising paraphrase identification, sentiment analysis, and text classification, the student model maintained strong performance across many tasks despite this reduction. The model was also used on a real-world ADHD dataset with an accuracy of 85%, F1 score of 85%, precision of 85%, and recall of 85%. When compared to DistilBERT (66 million parameters) and ClinicalBERT (110 million parameters), LastBERT demonstrated comparable performance, with DistilBERT slightly outperforming it at 87%, and ClinicalBERT achieving 86% across the same metrics. These findings highlight the LastBERT models capacity to classify degrees of ADHD severity properly, so it offers a useful tool for mental health professionals to assess and comprehend material produced by users on social networking platforms. The study emphasizes the possibilities of knowledge distillation to produce effective models fit for use in resource-limited conditions, hence advancing NLP and mental health diagnosis. Furthermore underlined by the considerable decrease in model size without appreciable performance loss is the lower computational resources needed for training and deployment, hence facilitating greater applicability. Especially using readily available computational tools like Google Colab and Kaggle Notebooks. This study shows the accessibility and usefulness of advanced NLP methods in pragmatic world applications.