Poly(N,N-diethylacrylamide) (PdEA), one of the thermoresponsive polymers, in aqueous solutions has attracted much attention because of its characteristic properties, such as coil-to-globule (CG) transition. We performed two-dimensional infrared spectroscopy and molecular dynamics (MD) simulations to understand the hydration dynamics in the vicinity of the CG transition at the molecular level via vibrational frequency fluctuations of the carbonyl stretching modes in the side chains of PdEA. Furthermore, N,N-diethylpropionamide, a repeating monomer unit of PdEA, is also investigated for comparison. From decays of the frequency–frequency time correlation functions (FFTCFs) of the carbonyl stretching modes, we consider that inhomogeneity of the hydration environments originates from various backbone configurations of PdEA. The degree of the inhomogeneity depends on temperature. Hydration water molecules near the carbonyl groups are influenced by the confinements of the polymers. The restricted reorientation of the embedded water, the local torsions of the backbone, and the rearrangement of the whole structure contribute to the slow spectral diffusion. By performing MD simulations, we calculated the FFTCFs and dynamical quantities, such as fluctuations of the dihedral angles of the backbone and the orientation of the hydration water molecules. The simulated FFTCFs match well with the experimental results, indicating that the retarded water reorientations via the excluded volume effect play an important role in the vibrational frequency fluctuations of the carbonyl stretching mode. It is also found the embedded water molecules are influenced by the local torsions of the backbone structure within the time scales of the spectral diffusion.