Hydrocarbon gas injection is the most widely applied process after waterflooding, and is a promising enhanced oil recovery (EOR) injectant for use in Middle East carbonate oil fields. Gas injection improves microscopic displacement efficiency and generally acts as pressure maintenance; however, unfavorable mobility ratio can negatively impact the ultimate recovery due to viscous fingering and gravity override. This paper describes two gas injection pilots that have been implemented in offshore Middle-East carbonate reservoirs, a secondary and a tertiary gas injection through line drive to assess injectivity, productivity, macroscopic sweep efficiency, flow assurance and operational efficiency in a field that has long water-injection history. A strong monitoring plan, including an observer well, was applied through time-lapse saturation logging, pressure measurements, production testing, tracer campaign, etc. to evaluate the pilot efficiency and address key uncertainties upfront prior to full-field application.This paper describes the pilot performance in the context of full-field development, local and macroscopic displacement efficiency, flow assurance issues, and operational learnings. The gas injection performance is strongly impacted by reservoir heterogeneity, gravity segregation and the existing pressure gradient, and the history match performed indicates near-miscible or miscible behavior depending upon local pressure regimes, which thus govern the ultimate recovery. The history match also shows that for the same pilot, performance can be further improved through water-alternating-gas (WAG) injection, resulting in a viable development scheme for full-field implementation.