Tiny agricultural pests such as spider mites (Acari: Tetranychidae) attached to seedlings grown outdoors often invade greenhouses, thereby triggering pest outbreaks. To solve the problem, we examined whether differences in anoxia tolerance between animals and plants would permit the application of an anoxic environment to control spider mites without the aid of acaricides. Under an anoxic environment created by using a commercial deoxidant at 25 °C, the time for 50 % mortality of eggs, non-diapausing adults (summer form), and diapausing adults (winter form) were 6.1, 5.5, and 23.6 h, respectively, for Tetranychus urticae Koch and 5.4, 3.9, and 23.2 h, respectively, for Tetranychus kanzawai Kishida. With anoxia for 12 h, no eggs and non-diapausing adults survived in either species, whereas most diapausing adults (98 % for T. urticae and 88 % for T. kanzawai) survived. Under this treatment, host Phaseolus vulgaris L. seedlings showed serious physiological disorders in their primary leaves and apical buds, and unusual lateral buds developed in the cotyledon axils. The spider mites acquire anoxia tolerance during diapause, but anoxia can potentially control them during the summer if no negative effects are observed in the treated seedlings.