IntroductionHeart failure is the leading cause of death in the Western world (1). Defective calcium (Ca 2+ ) cycling, such as decreased Ca 2+ uptake in the sarcoplasmic reticulum (SR) or SR calcium leak occurs in failing hearts (2, 3), and genetic mutations in calcium-handling genes cause arrhythmias and dilated cardiomyopathy (DCM) (4). Altered expression of calcium-handling genes perturbs contractility (5-9), but relatively little is known about how the expression of these genes is coordinated in the heart.Mediator is a multiprotein complex of about 30 subunits that form the core and kinase submodules (10, 11). The kinase submodule, containing MED12, MED13, CDK8, and Cyclin C (12), can repress transcription through allosteric inhibition of RNA Pol II binding to the core submodule (13) but can also activate transcription by promoting Pol II recruitment to target genes via specific transcription factors (14). We previously demonstrated that cardiac MED13 regulates systemic energy homeostasis through signaling to extracardiac tissues (15,16), but the roles of the other kinase components in the heart have not been investigated.MED12, a component of the Mediator kinase submodule, is encoded on the X chromosome, and missense mutations are associated with a variety of X-linked disorders (17)(18)(19). Developmental signaling pathways and transcription factors converge on MED12, which acts as a transcriptional hub required to coordinate development (20)(21)(22)(23). Deletion of Med12 in Drosophila decreases expression of sonic hedgehog target genes and leads to defects in eye development (20), and mutations in Med12 in zebrafish disrupt SOX-mediated transcription during endoderm development (22). MED12 is also required for neuron development through its regulation of TBX2B in zebrafish (23). Med12 hypomorphic mutant mice die in utero due to various developmental defects (24, 25), but the function of MED12 in the heart has not yet been investigated.The Mediator complex regulates gene transcription by linking basal transcriptional machinery with DNA-bound transcription factors. The activity of the Mediator complex is mainly controlled by a kinase submodule that is composed of 4 proteins, including MED12. Although ubiquitously expressed, Mediator subunits can differentially regulate gene expression in a tissue-specific manner. Here, we report that MED12 is required for normal cardiac function, such that mice with conditional cardiac-specific deletion of MED12 display progressive dilated cardiomyopathy. Loss of MED12 perturbs expression of calcium-handling genes in the heart, consequently altering calcium cycling in cardiomyocytes and disrupting cardiac electrical activity. We identified transcription factors that regulate expression of calcium-handling genes that are downregulated in the heart in the absence of MED12, and we found that MED12 localizes to transcription factor consensus sequences within calcium-handling genes. We showed that MED12 interacts with one such transcription factor, MEF2, in cardiomyocytes an...