Cancer immunotherapy, which aims to control the immune system to eradicate cancer cells and prevent their spread, needs to be personalized because anticancer immune responses can be inhibited in several ways that vary from patient to patient. Cancer immunotherapy includes pharmaceuticals such as immune checkpoint inhibitors and monoclonal antibodies (MAbs) as well as cell therapy, immunogene therapy, and vaccines. Combination of programmed cell death protein 1 (PD-1)/programmed cell death protein ligand 1 (PD-L1) drugs with other immunotherapy drugs, for example, antibody-drug conjugates, as well as combination of PD-1/PD-L1 drugs with other therapies, for example, chemotherapy and radiation therapy, are being explored. Biomarkers are important for predicting the response to immunotherapy. Molecular diagnostics and sequencing are important technologies for guiding treatment in immuno-oncology. Genomic profiling of tumor mutational burden may enhance the predictive utility of PD-L1 expression and facilitate personalized combination immunotherapy. Optimization of personalized immuno-oncology requires integration of several technologies and selection of those best suited for an individual patient. Advances in immuno-oncology are also attributed to technologies for targeted delivery of anticancer therapeutics such as antigen-capturing nanoparticles for precision targeting and selective delivery. A breakthrough in cell therapy of cancer is a chimeric antigen receptors-T cell, which combines the antigen-binding site of a MAb with the signal activating machinery of a T cell, freeing antigen recognition from major histocompatibility complex restriction. Gene-editing tools such as clustered regularly interspaced short palindromic repeats have a promising application for removing alloreactivity and decreasing immunogenicity of third-party T cells. In conclusion, personalized immuno-oncology is one of the most promising approaches to management of cancer.