The masking release (MR; i.e., better speech recognition in fluctuating compared with continuous noise backgrounds) that is evident for listeners with normal hearing (NH) is generally reduced or absent for listeners with sensorineural hearing impairment (HI). In this study, a real-time signal-processing technique was developed to improve MR in listeners with HI and offer insight into the mechanisms influencing the size of MR. This technique compares short-term and long-term estimates of energy, increases the level of short-term segments whose energy is below the average energy, and normalizes the overall energy of the processed signal to be equivalent to that of the original long-term estimate. This signal-processing algorithm was used to create two types of energy-equalized (EEQ) signals: EEQ1, which operated on the wideband speech plus noise signal, and EEQ4, which operated independently on each of four bands with equal logarithmic width. Consonant identification was tested in backgrounds of continuous and various types of fluctuating speech-shaped Gaussian noise including those with both regularly and irregularly spaced temporal fluctuations. Listeners with HI achieved similar scores for EEQ and the original (unprocessed) stimuli in continuous-noise backgrounds, while superior performance was obtained for the EEQ signals in fluctuating background noises that had regular temporal gaps but not for those with irregularly spaced fluctuations. Thus, in noise backgrounds with regularly spaced temporal fluctuations, the energy-normalized signals led to larger values of MR and higher intelligibility than obtained with unprocessed signals.