2024
DOI: 10.3390/stats7040071
|View full text |Cite
|
Sign up to set email alerts
|

Levels of Confidence and Utility for Binary Classifiers

Zhiyi Zhang

Abstract: Two performance measures for binary tree classifiers are introduced: the level of confidence and the level of utility. Both measures are probabilities of desirable events in the construction process of a classifier and hence are easily and intuitively interpretable. The statistical estimation of these measures is discussed. The usual maximum likelihood estimators are shown to have upward biases, and an entropy-based bias-reducing methodology is proposed. Along the way, the basic question of appropriate sample … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 7 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?