Cancer has become the primary reason of deaths in Dilovasi probably due to its location with unique topography under the influence of heavy industrialization and traffic. In this study, possible sources and carcinogenic health risks of PAHs and PCBs were investigated in Dilovasi region by Positive Matrix Factorization (PMF) and the USEPA approach, respectively. PAHs and PCBs were measured monthly for a whole year at 23 sampling sites using PUF disk passive samplers. Average ambient air concentrations were found as 285±431ng/m and 4152±6072pg/m, for ΣPAH and ΣPCB, respectively. PAH concentrations increased with decreasing temperature especially at urban sites, indicating the impact of residential heating in addition to industrial activities and traffic. On the other hand, PCB concentrations mostly increased with temperature probably due to enhanced volatilization from their sources. Possible sources of PAHs were found as emissions of diesel and gasoline vehicles, biomass and coal combustion, iron and steel industry, and unburned petroleum/petroleum products, whereas iron-steel production, coal and biomass burning, technical PCB mixtures, and industrial emissions were identified for PCBs. The mean carcinogenic risk associated with inhalation exposure to PAHs and PCBs were estimated to be >10 and >10, respectively, at all sampling points, while the 95th percentile was >10 at 15 of 23 and >10 at 8 of 23 sampling locations, respectively. Probabilistic assessment showed, especially for PCBs, that a majority of Dilovasi population face significant health risks. The higher risks due to PCBs further indicated that PCBs and possibly other pollutants originating from the same sources such as PBDEs and PCNs may be an important issue for the region.