With the continuous development of the social economy, the ways of obtaining learning materials and learning resources have gradually increased, especially the development of the Internet has enabled more high-quality resources to be shared, but it should be noted that it is precisely because of the excessive resources, it is relatively complicated to find suitable and interesting learning resources. In response to these needs and deficiencies, this paper introduce image big data processing technology, characterizes specific learning characteristics using the time decay function by sorting out the business logic of personalized learning resource push. It also imports specific learning cognitive levels, and matches with the corresponding learning resources, maximizes the quality service of personalized Learning facilities, and improves the efficiency of learning resources. The study findings demonstrate that the image big data processing technique is effective and can support the push evaluation of personalized learning resources.Povzetek: Prispevek ocenjuje personalizirano posredovanje učnih virov ob upoštevanju tehnologije obdelave slikovnih velikih podatkov. Z uporabo funkcije časovnega razpada za karakterizacijo učnih značilnosti in uvozom specifičnih učnih kognitivnih ravni se izboljša učinkovitost in kakovost posredovanja učnih virov. Študija potrjuje učinkovitost te tehnologije pri podpori ocenjevanja personaliziranih učnih virov.