2024
DOI: 10.1002/csc2.21329
|View full text |Cite
|
Sign up to set email alerts
|

Leveraging deep learning for dollar spot detection and quantification in turfgrass

Elisabeth C. A. Kitchin,
Henry J. Sneed,
David S. McCall

Abstract: This study evaluates the effectiveness of fine‐tuning a semantic segmentation model to identify and quantify dollar spot in turfgrasses, the most extensively managed and researched disease of turfgrasses worldwide. Using the DeepLabV3+ model, recognized for its capability to segment complex shapes and integrate multi‐scale contextual information, the research leveraged a diverse dataset comprising various turfgrass species, disease stages, and lighting conditions to ensure robust model training. The trained mo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 49 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?