PurposeTo explore white matter network topological properties changes in middle-aged and elderly patients with functional constipation (Functional Constipation, FC) by diffusion tensor imaging (DTI), and to evaluate the correlation between the abnormal changes and clinical data.Methods29 FC patients and 31 age- and sex-matched healthy controls (HC) were recruited. Magnetic resonance imaging and clinical data were collected. The white matter network changes in FC patients were analyzed using deterministic fiber tracking methods, graph theory algorithms, and partial correlation analysis with clinical data.ResultsThe nodal clustering coefficient and nodal local efficiency of FC patients in the right orbital inferior frontal gyrus, right medial superior frontal gyrus, right rectus muscle, right hippocampus, left paracentral lobule and left temporal pole, and the nodal clustering coefficient in right orbital superior frontal gyrus, left cuneus lobe and right superior occipital gyrus, the nodal local efficiency in the right medial and paracingulate gyrus, right precuneus and right dorsolateral superior frontal gyrus of FC patients are lower than that of HC. The nodal local efficiency and clustering coefficient of FC patients in left hippocampus, left amygdala, right parietal inferior limbic angular gyrus and right angular gyrus, the nodal local efficiency in the right fusiform gyrus, left supplementary motor cortex and the nodal efficiency in the left lateral temporal gyrus and right orbital middle frontal gyrus (ORBmid.R) of FC patients are higher than that of HC. The nodal efficiency of ORBmid.R in FC was positively correlated with the Patient Assessment of Constipation quality of life questionnaire (PAC-QoL).ConclusionMiddle-aged and elderly FC patients have differences in the nodal level properties in the limbic system, supplementary motor cortex, and default mode network brain regions, and the nodal efficiency of ORBmid.R was positively correlated with the PAC-QoL score, revealing that FC may be related to the abnormal processing of visceral sensorimotor in ORBmid.R and providing potential imaging diagnostic markers and therapeutic targets for middle-aged and elderly FC patients.