2018
DOI: 10.2298/fil1807545m
|View full text |Cite
|
Sign up to set email alerts
|

Lévy processes time-changed by the first-exit time of the inverse Gaussian subordinator

Abstract: This paper deals with a characterization of the first-exit time of the inverse Gaussian subordinator in terms of natural exponential family. This leads us to characterize, by means its variance function, the class of L?vy processes time-changed by the first-exit time of the inverse Gaussian subordinator.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
8
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
2

Relationship

2
0

Authors

Journals

citations
Cited by 2 publications
(8 citation statements)
references
References 21 publications
0
8
0
Order By: Relevance
“…The variance function of the natural exponential family F ( η 1 ) is given, for all mMFfalse(η1false)false{0false}, by VFfalse(η1false)false(mfalse)=)(KQ1)(ψη1false(mfalse)2VFfalse(ρ1false))(mKQ1)(ψη1false(mfalse)+mVFfalse(Q1false))(KQ1)(ψη1false(mfalse)KQ1)(ψη1false(mfalse), where VFfalse(ρ1false)false(xfalse)=4x31+8xfalse(2x+1false)1+8x+6x+1, for all x ∈ (0, + ∞ ) (see Theorem 3.1 and Theorem 4.4. of Mselmi, 2018a). In the rest of the paper, we denote by μ:=μ1, ρ:=ρ1 and η:=η1.…”
Section: Preliminariesmentioning
confidence: 99%
See 4 more Smart Citations
“…The variance function of the natural exponential family F ( η 1 ) is given, for all mMFfalse(η1false)false{0false}, by VFfalse(η1false)false(mfalse)=)(KQ1)(ψη1false(mfalse)2VFfalse(ρ1false))(mKQ1)(ψη1false(mfalse)+mVFfalse(Q1false))(KQ1)(ψη1false(mfalse)KQ1)(ψη1false(mfalse), where VFfalse(ρ1false)false(xfalse)=4x31+8xfalse(2x+1false)1+8x+6x+1, for all x ∈ (0, + ∞ ) (see Theorem 3.1 and Theorem 4.4. of Mselmi, 2018a). In the rest of the paper, we denote by μ:=μ1, ρ:=ρ1 and η:=η1.…”
Section: Preliminariesmentioning
confidence: 99%
“…Its first-exit time is defined by YðtÞ ¼ inffs > 0; XðsÞ > tg , where X(t) is inverse Gaussian distributed (see Meerschaert & Scheffler, 2008;Meerschaert, Nane, & Vellaisamy, 2011, 2018a, 2018a, 2018b, 2018b. Using the same notations of Mselmi (2018a), we denote by Q y (dz), ρ t (dy),…”
Section: Natural Exponential Familymentioning
confidence: 99%
See 3 more Smart Citations