The development of a high‐performance electrocatalytic acetylene semi‐hydrogenation catalyst is the key to the selective removal of acetylene from industrial ethylene gas and non‐oil route to ethylene production. However, it is still hampered by the deactivation of the catalyst and hydrogen evolution interference. Here, we proposed an interface engineering strategy involving the Cu and cupric oxide nanoparticles dispersed on amorphous SiO2 (Cu/CuOx/SiO2) by a simple stöber method. x‐ray photoelectron spectroscopy demonstrated the strong interfacial interaction between cupric oxide nanoparticles and SiO2. The formed Cu‐O‐Si interface stabilized the Cuσ+ at high reduction potentials, thus improving the activity and stability of the acetylene reduction reaction, as confirmed by in situ Raman spectroscopy. Consequently, the electrochemical test results showed that at 0.5 M KHCO3, the maximum Faraday efficiency (FE) of ethylene on the optimized Cu/CuOx/SiO2 reached 96%. And ethylene FE remains above 85% at −100 mA cm−2 for 40 h.