2015
DOI: 10.1080/02564602.2015.1073572
|View full text |Cite
|
Sign up to set email alerts
|

Lexicon Ensemble and Lexicon Pooling for Sentiment Polarity Detection

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0
2

Year Published

2018
2018
2024
2024

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 12 publications
(6 citation statements)
references
References 12 publications
0
4
0
2
Order By: Relevance
“…Researchers use this method less commonly to make a prediction. The primary advantage is that it is scalable in comparison to other algorithms [13].…”
Section: Neural Networkmentioning
confidence: 99%
See 1 more Smart Citation
“…Researchers use this method less commonly to make a prediction. The primary advantage is that it is scalable in comparison to other algorithms [13].…”
Section: Neural Networkmentioning
confidence: 99%
“…For its ability to work in a time-efficient manner and to disregard noise or irrelevant data, and its simplicity to implementation, Naïve Bayes Classifier is a viral algorithm for test classification in the fields like spam or fake news detection, sentiment analysis, etc. This algorithm is based on a theorem known as Bayes Theorem, first invented by a British scientist named Thomas Bayes [26]. The idea of the Bayes Theorem is to calculate the probability of an event based on any previous knowledge or conditions that have an impact on the event.…”
Section: ) Naïve Bayes Classifiermentioning
confidence: 99%
“…Khan et al [14] present an entity-level sentiment analysis method by combining a lexicon and learning-based method to perform sentiment analysis on Twitter data. Devaraj et al [15] detect sentiment polarity of free-form texts by using lexicon ensemble and lexicon pooling. Khan et al [16] build a sentiment dictionary SentiMI by extracting sentiment terms from SentiWordNet and develop a complete framework using feature selection and extracting mutual information from SentiWordNet to improve sentiment polarity detection.…”
Section: Sentiment Polarity Detectionmentioning
confidence: 99%
“…Adicionalmente, se han propuesto métodos que involucran recursos léxicos y métodos de aprendizaje supervisado. Por ejemplo, Madhavi D. et al [6] trabajaron con dos enfoques: el primero es la construcción de clasificadores con ensambles que obtienen de la combinación de tres léxicos de cuatro que usan (SentiWordNet, Bing Liu Lexicon, SenticNet, MPQA), haciendo un clasificador por cada léxico, además uno por cada ensamble; el segundo enfoque mencionado consiste en aunar el conocimiento que proporcionan los recursos léxicos a un clasificador. Reportan no haber encontrado una mejora en usar ensambles a usar los léxicos originales, sin embargo, se notó una mejoría al hacer uso del conocimiento proporcionado por los léxicos.…”
Section: Trabajo Relacionadounclassified
“…En este artículo utilizamos un conjunto de recursos léxicos tanto para el idioma Inglés como para el Español que han sido usados previamente en la literatura [6,10]. En la tabla 1 se muestran cinco recursos léxicos con el número de palabras asociada a cada sentimiento.…”
Section: Recursos Léxicos Para El Análisis De Sentimientosunclassified