The majority of the human genome encodes long noncoding RNA (lncRNA) genes, critical regulators of various cellular processes, which largely outnumber protein-coding genes. However, lncRNA-involved fusions have not been surveyed and characterized yet. Here, we present a systematic study of the lncRNA fusion landscape across cancer types and identify >30 000 high-confidence tumor-specific lncRNA fusions (using 8284 tumor and 6946 normal samples). Fusions positively correlated with DNA damage and cancer stemness and were specifically low in microsatellite instable (MSI)-High or virus-infected tumors. Moreover, fusions distribute differently among cancer molecular subtypes, but with shared enrichment in tumors that are microsatellite stable (MSS), with high somatic copy number alterations (SCNA), and with poor survival. Importantly, we find a potentially new mechanism, mediated by enhancer RNAs (eRNA), which generates secondary fusions that form densely connected fusion networks with many fusion hubs targeted by FDA-approved drugs. Finally, we experimentally validate functions of two tumor-promoting chimeric proteins derived from mRNA-lncRNA fusions, KDM4B–G039927 and EPS15L1–lncOR7C2–1. The EPS15L1 fusion protein may regulate (Gasdermin E) GSDME, critical in pyroptosis and anti-tumor immunity. Our study completes the fusion landscape in cancers, sheds light on fusion mechanisms, and enriches lncRNA functions in tumorigenesis and cancer progression.