Human induced pluripotent stem cells (hiPSCs) are emerging as a tool for understanding human brain development at cellular, molecular, and genomic levels. Here we show that hiPSCs grown in suspension in the presence of rostral neuralizing factors can generate 3D structures containing polarized radial glia, intermediate progenitors, and a spectrum of layer-specific cortical neurons reminiscent of their organization in vivo. The hiPSC-derived multilayered structures express a gene expression profile typical of the embryonic telencephalon but not that of other CNS regions. Their transcriptome is highly enriched in transcription factors controlling the specification, growth, and patterning of the dorsal telencephalon and displays highest correlation with that of the early human cerebral cortical wall at 8-10 wk after conception. Thus, hiPSC are capable of enacting a transcriptional program specifying human telencephalic (pallial) development. This model will allow the study of human brain development as well as disorders of the human cerebral cortex.human embryonic stem cell | embryo | differentiation | cortical layer E merging data highlight the complexity and dynamic nature of gene expression in the central nervous system (CNS) and the divergence between human and other mammalian species, which is especially pronounced in the developing brain (1-4). Exploring such differences may reveal the genetic underpinnings of the larger size and complex architecture of the human brain and elucidate the molecular and cellular substrates of higher cognitive functions, as well as of our vulnerability to neurodevelopmental and neurodegenerative disorders. To understand the genetic programs that drive cell specification and differentiation in the human brain, it is important to develop model systems that recapitulate dynamic aspects of neural development, in addition to making inferences from commonly used models of lower mammalian species.Recapitulating human neural development in vitro using human induced pluripotent stem cells (hiPSCs) can provide our first understanding of how genetic variation and disease-causing mutations influence neural development. Human iPSCs generated from reprogrammed cells can be differentiated into any tissue, including the CNS, while maintaining the genetic background of the individual of origin. These critical features have been exploited to model monogenic forms of neurodevelopmental disorders, such as Rett and Timothy syndromes, and even psychiatric disorders with complex inheritance, such as schizophrenia (5-7). The brain and spinal cord develop according to distinct differentiation programs from the earliest stages of CNS development (i.e., at the progenitor stage during gastrulation) (8, 9). Regional differences in gene expression within stem and progenitor cells appear at the onset of the formation of both mouse (10, 11) and human CNS, as shown by recent studies of the human transcriptome using postmortem tissue (4).Neural cells are thought to differentiate by "default" into an anterior, for...