Nanomaterials are extensively studied in electrochemical energy storage and conversion systems because of their structural advantages. However, their volumetric energy density still needs improvement due to the high surface area, especially the carbon based nanocomposites. Constructing hierarchical micro-scaled materials from closely stacked subunits is proposed as an effective way to solve the problem. In this work, Li3V2(PO4)3@carbon hierarchical microspheres are prepared by a solvothermal reaction and subsequent annealing. Hierarchical Li3V2(PO4)3 structures with different subunits are obtained with the aid of polyvinyl pyrrolidone (PVP). Moreover, excessive PVP interconnect and form PVP-based hydrogels, which later convert into conductive carbon layer on the surface of Li3V2(PO4)3 microspheres during the annealing process. As
a cathode material for lithium ion batteries, the 3D carbon wrapped Li3V2(PO4)3 hierarchical microspheres exhibit high rate capability and excellent cycling stability. The electrode has the capacity retention of 80% after 5000 cycles even at 50C.