We compute the monoidal and braided auto-equivalences of the modular tensor categories C(slr+1, k), C(so2r+1, k), C(sp 2r , k), and C(g2, k). Along with the expected simple current auto-equivalences, we show the existence of the charge conjugation auto-equivalence of C(slr+1, k), and exceptional auto-equivalences of C(so2r+1, 2), C(sp 2r , r), C(g2, 4). We end the paper with a section discussing potential applications of these computations.