Simple SummaryMore pork is eaten in the world than any other meat. Making production systems and practices more sustainable will benefit the animals, the planet and people. A system is presented by which production practices are evaluated using a sustainability matrix. The matrix shows why some practices are more common in some countries and regions and the impediments to more sustainable systems. This method can be used to assess the sustainability of production practices in the future where objective, science-based information is presented alongside ethical and economic information to make the most informed decisions. Finally, this paper points to current pork production practices that are more and less sustainable.AbstractAmong land animals, more pork is eaten in the world than any other meat. The earth holds about one billion pigs who deliver over 100 mmt of pork to people for consumption. Systems of pork production changed from a forest-based to pasture-based to dirt lots and finally into specially-designed buildings. The world pork industry is variable and complex not just in production methods but in economics and cultural value. A systematic analysis of pork industry sustainability was performed. Sustainable production methods are considered at three levels using three examples in this paper: production system, penning system and for a production practice. A sustainability matrix was provided for each example. In a comparison of indoor vs. outdoor systems, the food safety/zoonoses concerns make current outdoor systems unsustainable. The choice of keeping pregnant sows in group pens or individual crates is complex in that the outcome of a sustainability assessment leads to the conclusion that group penning is more sustainable in the EU and certain USA states, but the individual crate is currently more sustainable in other USA states, Asia and Latin America. A comparison of conventional physical castration with immunological castration shows that the less-common immunological castration method is more sustainable (for a number of reasons). This paper provides a method to assess the sustainability of production systems and practices that take into account the best available science, human perception and culture, animal welfare, the environment, food safety, worker health and safety, and economics (including the cost of production and solving world hunger). This tool can be used in countries and regions where the table values of a sustainability matrix change based on local conditions. The sustainability matrix can be used to assess current systems and predict improved systems of the future.