In order to compare the maximum potential environmental impact savings that may result from the implementation of innovative biorefinery alternatives at a regional scale, the Territorial Metabolism-Life Cycle Assessment (TM-LCA) framework is implemented. With the goal of examining environmental impacts arising from technology-to-region (territory) compatibility, the framework is applied to two biorefinery alternatives, treating a mixture of cow manure and grape marc. The biorefineries produce either biogas alone or biogas and polyhydroxyalkanoates (PHA), a naturally occurring polymer. The production of PHA substitutes either polyethylene terephthalate (PET) or biosourced polylactide (PLA) production. The assessment is performed for two regions, one in Southern France and the other in Oregon, USA. Changing energy systems are taken into account via multiple dynamic energy provision scenarios. Territorial scale impacts are quantified using both LCA midpoint impact categories and single score indicators derived through multi-criteria decision assessment (MCDA). It is determined that in all probable future scenarios, a biorefinery with PHA-biogas co-production is preferable to a biorefinery only producing biogas. The TM-LCA framework facilitates the capture of technology and regionally specific impacts, such as impacts caused by local energy provision and potential impacts due to limitations in the availability of the defined feedstock leading to additional transport.Sustainability 2019, 11, 3836 2 of 22 transition into a sustainable bioeconomy, as they allow for prospective studies. LCA of production systems/technologies, such as various agricultural productions, e.g., wine, cereal, and meat, can benefit from applying some of the new developments, since the large inputs and outputs to these systems, most likely, will have great environmental implications when changes to the production are implemented.By applying the TM-LCA framework, as used in this study, it is possible to assess said systems in the specific context of the region, i.e., taking into consideration the region's infrastructure, feedstock availability and accessibility, and the technical feasibility of technology implementation. Assessing large systems, as mentioned above, can be approached by defining the geographical boundaries in terms of a "producer territory" [4] so that the LCA can be applied for assessment of a delimited "territory", e.g., wine-producing areas, within a broadly defined region, e.g., Southern France. The producer territory is thus defined as the area of interaction between the aggregated producers and other systems within the region. The TM-LCA framework reduces data demand by aggregating individual areas of the production of, for example, a specific product, supply chain or waste treatment technology, while ignoring unchanging background systems, i.e., only changes to the region interacting with the producer territory are assessed. At the same time, representativeness is increased by merging local inventory data from individual pr...