The knowledge of comparative and developmental immunobiology has grown over the years and has been strengthened by the contributions of multi-omics research. High-performance microscopy, flow cytometry, scRNA sequencing, and the increased capacity to handle complex data introduced by machine learning have allowed the uncovering of aspects of great complexity and diversity in invertebrate immunocytes, i.e., immune-related circulating cells, which until a few years ago could only be described in terms of morphology and basic cellular functions, such as phagocytosis or enzymatic activity. Today, invertebrate immunocytes are recognized as sophisticated biological entities, involved in host defense, stress response, wound healing, organ regeneration, but also in numerous functional aspects of organismal life not directly related to host defense, such as embryonic development, metamorphosis, and tissue homeostasis. The multiple functions of immunocytes do not always fit the description of invertebrate organisms as simplified biological systems compared to those represented by vertebrates. However, precisely the increasing complexity revealed by immunocytes makes invertebrate organisms increasingly suitable models for addressing biologically significant and specific questions, while continuing to present the undeniable advantages associated with their ethical and economic sustainability.