This study presents a life cycle analysis (LCA) of end-of-life (EoL) photovoltaic (PV) systems in Australia. Three different EoL scenarios are considered for 1 kWh of electricity generation across a 30-year PV system lifespan: (i) disposal to landfill, (ii) recycling by laminated glass recycling facility (LGRF), and (iii) recycling by full recovery of EoL photovoltaics (FRELP). It is found that recycling technologies reduce the overall impact score of the cradle-to-grave PV systems from 0.00706 to 0.00657 (for LGRF) and 0.00523 (for FRELP), as measured using the LCA ReCiPe endpoint single score. The CO2 emissions to air decrease slightly from 0.059 kg CO2 per kWh (landfill) to 0.054 kg CO2 per kWh (for LGRF) and 0.046 kg CO2 per kWh (for FRELP). Increasing the PV system lifespan from 30 years to 50 and 100 years (a hypothetical scenario) improves the ReCiPe endpoint single-score impact from 0.00706 to 0.00424 and 0.00212, respectively, with corresponding CO2 emissions reductions from 0.059 kg CO2 per kWh to 0.035 and 0.018 kg CO2 per kWh, respectively. These results show that employing recycling slightly reduces the environmental impact of the EoL PV systems. It is, however, noted that recycling scenarios do not consider the recycling plant construction step due to a lack of data on these emerging PV panel recycling plants. Accounting for the latter will increase the environmental impact of the recycling scenarios, possibly defeating the purpose of recycling. Increasing the lifespan of the PV systems increases the longevity of the use of panel materials and is therefore favorable towards reducing environmental impacts. Our findings strongly suggest that PV recycling steps and technologies be carefully considered before implementation. More significantly, it is imperative to consider the circular design step up front, where PV systems are designed via circular economy principles such as utility and longevity and are rolled out through circular business models.