Life expectancy at birth has attracted interest in various fields, as a health indicator that measures the quality of life. Its appeal relies on the ability to enclose and summarize all the factors affecting longevity. However, more granular information, provided by social indicators such as cause-of-death mortality rates, plays a crucial role in defining appropriate policies for governments to achieve well-being and sustainability goals. Unfortunately, their availability is not always guaranteed. Exploiting the relationship between life expectancy at birth and cause-of-death mortality rates, in this paper we propose an indirect model to produce estimates of death rates due to specific causes using the summary indicator of life expectancy at birth, thus the general levels of the observed mortality. By leveraging on a constrained optimization procedure, we ensure a robust framework where the cause-specific mortality rates are coherent to the aggregate mortality. The main advantage is that indirect estimations allow us to overcome the data availability problem: very often the cause-specific mortality data are incomplete, whereas data on the aggregate mortality are not. Using data from the Human Cause-of-Death Database, we show a numerical application of our model to two different countries, Russia and Spain, which have experienced a different evolution of life expectancy and different leading causes of death. In Spain, we detected the impact of several public health policies on the lowered levels of cancer deaths and related life expectancy increases. As regards the Russia, our results catch the effects of the anti-alcohol campaign of 1985–1988 on longevity changes.