Biological processes such as circadian rhythms, cell division, metabolism, and development occur as ordered sequences of events. The synchronization of these coordinated events is essential for proper cell function, and hence the determination of critical time points in biological processes is an important component of all biological investigations. In particular, such critical time points establish logical ordering constraints on subprocesses, impose prerequisites on temporal regulation and spatial compartmentalization, and situate dynamic reorganization of functional elements in preparation for subsequent stages. Thus, building temporal phenomenological representations of biological processes from genome-wide datasets is relevant in formulating biological hypotheses on: how processes are mechanistically regulated; how the regulations vary on an evolutionary scale, and how their inadvertent disregulation leads to a diseased state or fatality. This paper presents a general framework (GOALIE) to reconstruct temporal models of cellular processes from time-course gene expression data. We mathematically formulate the problem as one of optimally segmenting datasets into a succession of "informative" windows such that time points within a window expose concerted clusters of gene action whereas time points straddling window boundaries constitute points of significant restructuring. We illustrate here how GOALIE successfully brings out the interplay between multiple yeast processes, inferred from combined experimental datasets for the cell cycle and the metabolic cycle. model building and model-checking | temporal data analysis | yeast cell cycle | yeast metabolic cycle | Kripke structures C ells and organisms can be viewed as progressing through sequences of states, as a result of discrete mechanisms. Defining these states and identifying the underlying mechanisms are critical to how we understand biological processes and how we may treat metabolic and developmental disorders. Central to such analysis tools are algorithms for time series analysis using temporal logic formalisms that were originally developed with engineering and computer and systems sciences applications in mind (1, 2, 3).The yeast species Saccharomyces cerevisiae, which has been researched extensively to understand the biology of eukaryotic microorganisms, is a good model organism to illustrate the ideas in this paper. To understand the systems biology of yeast, one may study temporal expression profiles of genes involved in a particular function-for instance, cellular (4) division or metabolism (5) -and create models of the state space dynamics in terms of labeled states and state transition relations. An illustration of this process in shown in Fig. 1. A yeast cell cycle (YCC) model can be created using data generated by Spellman et al. (6) and similarly, a yeast metabolic cycle (YMC) model can be created by combining data generated separately by two other research groups: Tu et al. (5), Klevecz et al. (7). These labeled state transition models are...