Narrow-band green-emitting phosphor β-SiAlON:Eu has been widely used in advanced wide-gamut backlighting devices. However, the origins for unusual sharp lines in photoluminescence emission at room temperature and tunable narrow-bandemission tailored by reducing Al-O in β-SiAlON:Eu are still unclear. Here, the presence of sharp-line fine structure in the emission spectra of β-SiAlON:Eu is mainly due to purely electronic transitions (zero phonon lines) and their vibronic repetitions resulted from the multi-microenvironment around Eu 2+ ions that has been revealed by relative emission intensity of sharp line depends on excitation wavelength and monotonously increasing decay time. The specific features of the Eu 2+ occupying interstitial sites indicate that the effect of crystal field strength can be neglected. Therefore the enhanced rigidity and higher ordering structure of β-SiAlON:Eu with decreasing the substitution of Si-N by Al-O become the main factors in decreasing electron-lattice coupling and reducing inhomogeneous broadening, favouring the blue-shift and narrow of the emission band, the enhanced thermal stability, as well as the charge state of Eu 2+ . Our results provide new insights for explaining the reason for narrow-band-emission in β-SiAlON:Eu, which will deliver an impetus for the exploration of phosphors with narrow band and ordering structure.