In contrast to conventional routing systems, which determine the shortest distance or the fastest path to a destination, this work designs a route planning specifically for electric vehicles by finding an energy-optimal solution while simultaneously considering stress on the battery. After finding a physical model of the energy consumption of the electric vehicle including heating, air conditioning, and other additional loads, the street network is modeled as a network with nodes and weighted edges in order to apply a shortest path algorithm that finds the route with the smallest edge costs. A variation of the Bellman-Ford algorithm, the Yen algorithm, is modified such that battery constraints can be included. Thus, the modified Yen algorithm helps solving a multi-objective optimization problem with three optimization variables representing the energy consumption with (vehicle reaching the destination with the highest state of charge possible), the journey time, and the cyclic lifetime of the battery (minimizing the number of charging/discharging cycles by minimizing the amount of energy consumed or regenerated). For the optimization problem, weights are assigned to each variable in order to put emphasis on one or the other. The route planning system is tested for a suburban area in Austria and for the city of San Francisco, CA. Topography has a strong influence on energy consumption and battery operation and therefore the choice of route. The algorithm finds different results considering different preferences, putting weights on the decision variable of the multi-objective optimization. Also, the tests are conducted for different outside temperatures and weather conditions, as well as for different vehicle types.