In a recent paper, Liu, Zhu & Wu (2015, J. Fluid Mech. 784: 304; LZW for short) present a far-field theory for the aerodynamic force experienced by a body in a two-dimensional, viscous, compressible and steady flow. In this companion theoretical paper we do the same for three-dimensional flow. By a rigorous fundamental solution method of the linearized Navier-Stokes equations, we not only improve the far-field force formula for incompressible flow originally derived by Goldstein in 1931 and summarized by Milne-Thomson in 1968, both being far from complete, to its perfect final form, but also prove that this final form holds universally true in a wide range of compressible flow, from subsonic to supersonic flows. We call this result the unified force theorem (UF theorem for short) and state it as a theorem, which is exactly the counterpart of the two-dimensional compressible Joukowski-Filon theorem obtained by LZW. Thus, the steady lift and drag are always exactly determined by the values of vector circulation Γ φ due to the longitudinal velocity and inflow Q ψ due to the transversal velocity, respectively, no matter how complicated the near-field viscous flow surrounding the body might be. However, velocity potentials are not directly observable either experimentally or computationally, and hence neither is the UF theorem. Thus, a testable version of it is also derived, which holds only in the linear far field and is exactly the counterpart of the testable compressible Joukowski-Filon formula in two dimensions. We call it the testable unified force formula (TUF formula for short). Due to its linear dependence on the vorticity, TUF formula is also valid for statistically stationary flow, including time-averaged turbulent flow.Key words: Authors should not enter keywords on the manuscript, as these must be chosen by the author during the online submission process and will then be added during the typesetting process (see http://journals.cambridge.org/data/relatedlink/jfmkeywords.pdf for the full list)