“…The anticipation of the discovery of a new regulatory mechanism in proteins currently considered as non-allosteric has generated intense attention to the field, driven by a fundamental interest in establishing new ways of regulating proteins/ enzymes, and the prospects for creating novel allosteric drugs having a lower toxicity due to higher binding selectivity [4, 23-26]. In recent years, a number of computational methods have been developed to search for new regulatory sites in protein structures, as well as complementary selective ligands that can influence the functional activity upon binding to the biopolymer [9]: using geometric [27-30], energy-based [31, 32] or bioinformatic criteria [13, 33, 34, 35], training sets of experimentally annotated sites [36, 37], and high-throughput virtual screening procedures [38, 39]. The currently available computer programs usually predict multiple sites in the structure of a selected protein (tens or even hundreds, depending on the globule size and the selected parameters).…”