Deep eutectic solvents (DESs) comprising choline chloride (ChCl) with either urea or ethylene glycol (EG) have been successfully used as powerful and potential electrolytes for extracting metals from their corresponding metal oxide precursors. In this work, for electrodeposition of Zn and Zn-Cu alloys, ChCl/urea-based DES was employed. Cyclic voltammetry study demonstrates that the reduction of Zn(II) to Zn is a diffusioncontrolled quasi-reversible, one-step, two electrons transfer process. Micro-/nanostructured Zn and Zn-Cu alloys films have been electrodeposited directly from their metal oxide precursors in DES, and the Zn and Zn-Cu alloy films exhibit homogeneous morphologies with controlled particle sizes. Besides, the electrodeposition of Cu from CuO in the eutectics based on ChCl with urea and EG has been investigated, respectively. The higher coordinated Cu species in the ChCl/urea-based DES are obviously more difficult to reduce, and higher overpotential is needed to drive the nucleation process compared with the lower coordinated Cu species in the ChCl/EG-based DES. The surface morphology of the Cu electrodeposits is significantly affected by the type of DES and the electrodeposition potentials. Furthermore, the Cu electrodeposits obtained in the ChCl/urea-based DES possess more dense microstructures than those produced in the ChCl/EG-based DES.