The photoinduced properties of the octacoordinated complex K4MoIV(CN)8⋅2 H2O were studied by theoretical calculations, crystallography, and optical and magnetic measurements. The crystal structure recorded at 10 K after blue light irradiation reveals an heptacoordinated Mo(CN)7 species originating from the light‐induced cleavage of one Mo−CN bond, concomitant with the photoinduced formation of a paramagnetic signal. When this complex is heated to 70 K, it returns to its original diamagnetic ground state, demonstrating full reversibility. The photomagnetic properties show a partial conversion into a triplet state possessing significant magnetic anisotropy, which is in agreement with theoretical studies. Inspired by these results, we isolated the new compound [K(crypt‐222)]3[MoIV(CN)7]⋅3 CH3CN using a photochemical pathway, confirming that photodissociation leads to a stable heptacyanomolybdate(IV) species in solution.