Being driven by non-covalent interactions, the formation of functional assemblies (or aggregates) of small molecules at nanoscale is a more common process in water than one would think. While most efforts on self-assembly in cellular environment concentrate on the assemblies of proteins (e.g., microtubules or amyloid fibers), nanoscale assemblies of small molecules are emerging functional entities that exhibit important biological function in cellular environments. This review describes the increasing efforts on the exploration of nanoscale assemblies of small molecules that largely originate from the serendipitous observations in research fields other than nanoscience and technology. Specifically, we describe that nanoscale assemblies of small molecules exhibit unique biological functions in extracellular and intracellular environment, thus inducing various cellular responses, like causing cell death or promoting cell proliferation. We first survey certain common feature of nanoscale molecular assemblies, then discuss several specific examples, such as, nanoscale assemblies of small peptides accumulated in the cells for selectively inhibiting cancer cells via promiscuous interactions with proteins, and nanoscale assemblies of a glycoconjugate for promoting the proliferation of stem cells or for suppressing immune responses. Subsequently, we emphasize the spatiotemporal control of nanoscale assemblies for controlling the cell fate, particularly illustrate a paradigm-shifting approach—enzyme-instructed self-assembly (EISA), that is, the integration of enzymatic reaction and self-assembly—for generating nanoscale assemblies from innocuous monomers for selectively inhibiting cancer cells. Moreover, we introduce a convenient assay for proteomic study of the proteins that interact with nanoscale assemblies of small molecules in cellular environment. Furthermore, we introduce the use of ligand-receptor interaction to catalyze the formation of nanoscale assemblies. By illustrating these experimental strategies for controlling the formation of nanoscale assemblies of small molecules and for identifying their corresponding protein targets, we aim to highlight that, though not being defined at the genetic level, nanoscale assemblies of small molecules are able to perform many critical biological functions. We envision that nanoscale assemblies of small molecules are a new frontier at the intersection of nanoscience and cell biology and biomedicine. In addition, we discuss the challenges and perspectives of relevant potential biomedical applications of nanoscale assemblies of small molecules.