A dental implant is an alloplastic framework inserted into the bone, either straight through the alveolar bone or beneath the mucosa or periosteum, to support and hold a permanent or removable dental prosthesis. Osseointegration is a striking phenomenon in which bone directly opposes the implant surface without any interposing collagen or fibroblastic matrix. Although titanium metallic implants were the subject of "osseointegration" at first, it is now used to refer to any biomaterial that can osseointegrate. The science of tissue engineering allows for regenerating complete biological components outside the body for possible replacement treatment or therapy. It uses cells, organic or synthetic scaffold materials, and bioactive molecules. The combination of periodontal ligament (PDL) cells with implant biomaterial is known as Ligaplants. When placed in regions with significant periodontal bone defects, ligaplants can promote the development of new bone. PDL implants, inserted into the missing teeth extraction socket, facilitate surgery. To protect the PDL cell cushion, ligaplants are fitted initially loosely. However, they firmly integrate without interlocking or making direct contact with the bones. Osseointegrated implants affixed directly to the alveolar bone encircling them cannot serve the same purpose as healthy teeth because natural periodontal tissue deteriorates over time. To create a biological connection capable of performing specific physiological tasks, a tissue-engineered PDL must be constructed in conjunction with a dental implant that is well thought out.