Abstract. Levels of ATP and ADP were studied in primary leaves of barley (Hordeum vulgare L. cv. Viner) seedlings grown under blue (BL) or red light (RL) of various irradiances. In mature leaf segments, BL stimulated a greater accumulation of adenylates than RL. Transfer of barley seedlings from RL to BL for 48 h caused about a twofold increase in the content of adenylates, probably due to de-novo synthesis of adenine nucleotides. Weak BL was found to stimulate an increase in the adenylate content and a higher irradiance enhanced the stimulatory effect. The adenylate content increased markedly from the base towards the tip of barley leaves grown under BL but not in those grown under RL. However, the adenylate content was higher in the basalmost segment of barley leaves grown under RL, indicating that the action of RL on adenylate content proceeded more rapidly than that of BL. The same conclusion could be drawn from the results of experiments with de-etiolated leaves. A linear relationship was established between the maximum rate of CO 2 fixation and the ATP or ADP content in mature segments of primary barley leaves. The possible involvement of two photoreceptors, phytochrome and cryptochrome, in the long-term light regulation of the total content of adenylates in primary barley leaves is discussed.