When an object moves faster than emissions it creates, it may appear at two positions simultaneously. The appearance or disappearance of this bifurcation is referred to as a pair event. Inherently convolved with superluminal motion, pair events have no subluminal counterparts. Common examples of superluminal motions that exhibit pair events include Cherenkov radiation, sonic booms, illumination fronts from variable light sources, and rotating beams. The minimally simple case of pair events from a single massive object is explored here: uniform linear motion. A pair event is perceived when the radial component of the object's speed toward the observer drops from superluminal to subluminal. Emission from the pair creation event will reach the observer before emission from either of the two images created. Potentially observable image pair events are described for sonic booms and Cherenkov light. To date, no detection of discrete images following a projectile pair event have ever been reported, and so the pair event nature of sonic booms and Cherenkov radiation, for example, remains unconfirmed. Recent advances in modern technology have made such pair event tracking feasible. If measured, pair events could provide important information about object distance and history.