The right timing of animal physiology and behavior ensures the stability of populations and ecosystems. In order to predict anthropogenic impacts on these timings, more insight is needed into the interplay between environment and molecular timing mechanisms. This is particularly true in marine environments.
Using high-resolution, long-term daylight measurements from a habitat of the marine annelid
Platynereis dumerilii
, we find that temporal changes in UVA/deep violet intensities, more than longer wavelengths, can provide annual time information, which differs from annual changes in photoperiod. We developed experimental setups that resemble natural daylight illumination conditions, and automated, quantifiable behavioral tracking. Experimental reduction of UVA/deep violet light (app. 370-430nm) under long photoperiod (LD16:8) significantly decreases locomotor activities, comparable to the decrease caused by short photoperiod (8:16). In contrast, altering UVA/deep violet light intensities does not cause differences in locomotor levels under short photoperiod. This modulation of locomotion by UVA/deep violet light under long photoperiod requires c-opsin1, an UVA/deep violet-sensor employing G
i
-signalling. C-opsin1 also regulates the levels of rate-limiting enzymes for monogenic amine synthesis and of several neurohormones, including PDF, Vasotocin (Vasopressin/Oxytocin) and NPY-1.
Our analyses indicate a complex inteplay between UVA intensities and photoperiod as indicators of annual time.