A wide variety of marine bioluminescent organisms emit light via the excited-state coelenteramide, which is produced from the coelenterazine oxidation via a series of complicated chemical reactions in protein. Photoluminescence of coelenteramide is a simple way to produce light without experiencing the intricate reactions starting from coelenterazine. To extend the color range of light emission, many coelenterazine analogues were synthesized, but mostly only produce blue and cyan fluorescence. Based on the 42 synthesized coelenterazine analogues, we theoretically studied the absorption and fluorescence properties of the corresponding coelenteramide analogues. The electronic effect, steric effect, conjugated effect and solvated effect were considered. The results indicated that conjugated effect has great influence on the strength and wavelength of fluorescence and large electron transfer is beneficial to redshift. Based on the regularities, we theoretically designed six coelenteramide analogues, and together with the original coelenteramide, the seven-ones emit the seven colors of rainbow via their photoluminescences. This study expands the coelenteramide fluorescence to the whole visible light region and could inspire new application.