Photonic crystals (PCs) can adjust the propagation and distribution of photons because of their unique periodic structures, which offers a compelling platform for photon management. The periodicity of materials with an alternating refractive index can be used to manipulate the dispersion of photons to generate the photonic bandgap (PBG), in which light is reflected. The slow photon effect, i.e., photon propagation at a reduced group velocity near the edges of the PBG, is widely regarded as another valuable optical property for manipulating light. Furthermore, multiple light scattering can increase the optical path, which is a vital optical property for PCs. Recently, the light reflected by PBG, the slow photon effect, and multiple light scattering have been exploited to improve light utilization efficiency in photoelectrochemistry, materials chemistry, and biomedicine to enhance light‐energy conversion efficiency. In this review, the fabrication of opal or inverse opal PCs and the theory for improving the light utilization efficiency of photocatalysis, solar cells, and photoluminescence regulation are discussed. We envision photon management of opal or inverse opal PCs may provide a promising avenue for light‐assisted applications to improve light‐energy‐conversion efficiency.