A lateral-type spin-photodiode having a refracting facet on a side edge of the device is proposed and demonstrated at room temperature. The light shed horizontally on the side of the device is refracted and introduced directly into a thin InGaAs active layer under the spin-detecting Fe contact in which spin-polarized carriers are generated and injected into the Fe contact through a crystalline AlO x tunnel barrier. Experiments have been carried out with a circular polarization spectrometry set up, through which helicity-dependent photocurrent component, I, is obtained with the conversion efficiency F 0.4 %, where F is the ratio between I and total photocurrent I ph . This value is the highest reported so far for pure lateral-type spin-photodiodes. It is discussed through analysis with a model consisting of drift-diffusion and quantum tunneling equations that a factor that limits the F value is unoccupied spin-polarized density-of-states of Fe in energy region into which spin-polarized electrons in a semiconductor are injected.