1989
DOI: 10.1051/jphys:0198900500120139300
|View full text |Cite
|
Sign up to set email alerts
|

Light-induced modulated structures, intrinsic optical multistability and instabilities for the competitive wave interactions in liquid crystals

Abstract: 2014 On étudie à la fois théoriquement et expérimentalement la multistabilité et les instabilités temporelles de processus ondulatoires non linéaires dans les conditions de transfert d'énergie et de compétition entre les différentes composantes de polarisation, pour un milieu anisotrope inhomogène présentant une non-linéarité à seuil. Dans de telles interactions, il se produit un couplage rétroactif lorsque le rayonnement laser induit un réseau d'indice de réfraction dans le milieu, à cause de la réponse non l… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
2
0

Year Published

1991
1991
2008
2008

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 14 publications
0
2
0
Order By: Relevance
“…In the simplest case of one-dimensional sinusoidal grating in the medium the linear susceptibility can be represented in the form15: =+2fiocosGoz (1) where the parameter j3 characterizes the depth of spatial modulation ( fl I < x o fi o < 0 ) G determines the periodicity (over coordinate z) , G = 2c I P , P is the grating period The initial system of two coupled equations for slowly varying complex amplitudes (which are the multipliers at phase terms exp (-iw t ik o,h z) of passing o) and scattered (Ah) waves is following13: dA0/ dz=iyAhexp(-iz) (2) -dAhi dz-iyAoexp(iz) where y = 2rw fl I / c (1 + 4Yrx 1/2 is the coupling parameter for waves (w is the optical frequency, c is the light velocity), is a constant of phase detuning from the Bragg resonance condition determined by relation 2 k= + we suppose that the wave vectors kand kare equivalent ( I ki = I ki k) . Furtherwe consider the most effective case of dynamic scattering for the exact Bragg resonance ( = 0).…”
Section: Physical Picture and Procedures Of Calculationsmentioning
confidence: 99%
See 1 more Smart Citation
“…In the simplest case of one-dimensional sinusoidal grating in the medium the linear susceptibility can be represented in the form15: =+2fiocosGoz (1) where the parameter j3 characterizes the depth of spatial modulation ( fl I < x o fi o < 0 ) G determines the periodicity (over coordinate z) , G = 2c I P , P is the grating period The initial system of two coupled equations for slowly varying complex amplitudes (which are the multipliers at phase terms exp (-iw t ik o,h z) of passing o) and scattered (Ah) waves is following13: dA0/ dz=iyAhexp(-iz) (2) -dAhi dz-iyAoexp(iz) where y = 2rw fl I / c (1 + 4Yrx 1/2 is the coupling parameter for waves (w is the optical frequency, c is the light velocity), is a constant of phase detuning from the Bragg resonance condition determined by relation 2 k= + we suppose that the wave vectors kand kare equivalent ( I ki = I ki k) . Furtherwe consider the most effective case of dynamic scattering for the exact Bragg resonance ( = 0).…”
Section: Physical Picture and Procedures Of Calculationsmentioning
confidence: 99%
“…(S.3) and as well in integrals of the system (S.5) we have analytical dependence for IAOh V5 t for the point with coordinates z,x: I Ao,h 2 çl exp(_2r2/rf-) + 1 exp(_2T2/rJ-Li = iagi -2 (1 +4o)2vcos/6Jrk2(3)hw2 2 the intensity of radiation. (S.6) in eq.…”
mentioning
confidence: 93%