BackgroundDiabetes mellitus is characterized jointly by hyperglycemia and hyperinsulinemia that make insulin more prone to be glycated and evolve insulin advanced glycation end products (Insulin- AGE). Here, we report the effect of beta-hydroxy butyrate (BHB) (the predominant ketone body) on the formation of insulin-AGE, insulin glycation derived liposomal lipid peroxidation and insulin-AGE toxicity in microglial cells.MethodsThe inhibitory effect of BHB was monitored as a result of insulin incubation in the presence of glucose or fructose using AGE-dependent fluorescence, Tyr fluorescence as well as anilinonaphthalenesulfonate (ANS) andthioflavin T (ThT) binding, and circular dichroism (CD) investigations. To study lipid peroxidation induced by insulin glycation, thiobarbituric acid (TBA) assay and thiobarbituric acid reactive substance (TBARS) monitoring were used. The effect of insulin–AGE on microglial viability was investigated by 3-(4, 5 dimethylthiazol-2-yl)—2, 5-diphenyltetrazoliumbromide (MTT) cell assay and Annexin V/propidium iodide (PI) staining.ResultsHere we are reporting the inhibitory effect of BHB on insulin glycation and generation of insulin-AGE as a possible explanation for insulin resistance. Moreover, the protective effect of BHB on consequential glycation derived liposomal lipid peroxidation as a causative event in microglial apoptosis is reported.ConclusionThe reduced insulin fibril formation, structural inertia to glycation involved conformational changes, anti-lipid peroxidation effect, and increasing microglia viability indicated the protective effect of BHB that disclose insight on the possible preventive effect of BHB on Alzheimer’s disease.