Deep Learning is a recent and important addition to the computational toolbox available for image reconstruction in fluorescence microscopy. We review state-of-the-art applications such as image restoration, super-resolution, and light-field imaging, and discuss how the latest Deep Learning research can be applied to other image reconstruction tasks such as structured illumination, spectral deconvolution, and sample stabilisation. Despite its successes, Deep Learning also poses significant challenges, has often misunderstood capabilities, and overlooked limits. We will address key questions, such as: What are the challenges in obtaining training data? Can we discover structures not present in the training data? And, what is the danger of inferring unsubstantiated image details?