Changing temperature and ocean acidification are well-recognised consequences of climate change in marine systems. In contrast to global trends, the South African west coast is experiencing cooling due to increased frequency and intensity of upwelling. The implications of concurrent cooling and acidification for marine biota are poorly understood, particularly at the community level. This laboratory study assessed how cooling and acidification might affect fouling communities along the South African west coast. Communities were experimentally exposed to two temperatures, 13℃ (current) and 9℃ (cooling), and three pH treatments, 7.9 (current), 7.6 and 7.4, for 18 days. Cooling and acidification altered community structure. Species diversity declined in response to acidification but was not affected by cooling. This was driven by greatest loss of species at 7.4 pH. Notably, acidification reduced the abundance of both calcifying and soft-bodied taxa, highlighting the vulnerability of taxa like ascidians to acidification. Overall, these results highlight the dominant threat posed by acidification, even for alien taxa that are often perceived as resilient to climate change. Additionally, in regions experiencing cooling, acidification may pose a greater threat to fouling communities than thermal changes.