2018
DOI: 10.1002/adfm.201801506
|View full text |Cite
|
Sign up to set email alerts
|

Light‐Stimulatable Molecules/Nanoparticles Networks for Switchable Logical Functions and Reservoir Computing

Abstract: The fabrication and electron transport properties of nanoparticles selfassembled networks (NPSAN) of molecular switches (azobenzene derivatives) interconnected by Au nanoparticles are reported, and optically driven switchable logical operations associated to the light-controlled switching of the molecules are demonstrated. The switching yield is up to 74%. It is also demonstrated that these NPSANs are prone to light-stimulable reservoir computing. The complex nonlinearity of electron transport and dynamics in … Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
18
0
3

Year Published

2018
2018
2024
2024

Publication Types

Select...
7
1

Relationship

2
6

Authors

Journals

citations
Cited by 19 publications
(21 citation statements)
references
References 55 publications
0
18
0
3
Order By: Relevance
“…19 Viero et al demonstrated that NPSANs of Au NPs functionalized by optically driven molecular switches exhibit both optically driven reconfigurable logic operations and reconfigurable strongly non-linear electron transport and dynamic behaviors (high-harmonic generation) required for reservoir computing. 20 In molecular electronic plasmonics (see Ref. 21 for a review), molecules chemically grafted, or deposited as thin films, on metallic nanostructures are used to modify the local surface plasmon (LSP) frequency depending on their molecular states (i.e., redox state, conformation or configuration, dipole moment changing the dielectric constant around the metal nanostructures), which, in turn, can be controlled via an applied bias.…”
mentioning
confidence: 99%
“…19 Viero et al demonstrated that NPSANs of Au NPs functionalized by optically driven molecular switches exhibit both optically driven reconfigurable logic operations and reconfigurable strongly non-linear electron transport and dynamic behaviors (high-harmonic generation) required for reservoir computing. 20 In molecular electronic plasmonics (see Ref. 21 for a review), molecules chemically grafted, or deposited as thin films, on metallic nanostructures are used to modify the local surface plasmon (LSP) frequency depending on their molecular states (i.e., redox state, conformation or configuration, dipole moment changing the dielectric constant around the metal nanostructures), which, in turn, can be controlled via an applied bias.…”
mentioning
confidence: 99%
“…2. Эти молекулы, описанная в литературе бт-азо [9][10][11][12][13][14][15], а также ее структурный изомер азо-бт (пример молекулярного дизайна). Они и являются объектами нашего исследования.…”
Section: эллипсоидом здесь показан олигомер сопряженного полимераunclassified
“…В экспериментах бт-азо молекулы пришивались с помощью тиольной группы на поверхность плоского золотого электрода (111 Au) (позже на поверхность кобальта [11]) или золотых наночастиц [9,10,[12][13][14][15]. Вторым, верхним электродом, выступал проводящий наконечник зонда, а методом исследования была электропроводящая атомносиловая микроскопия.…”
Section: эллипсоидом здесь показан олигомер сопряженного полимераunclassified
See 1 more Smart Citation
“…EiM processors thus comprise of a material (or medium) whose characteristics are determined by its configuration, and programming (or re-programming) is achieved by an Evolutionary Algorithm (EA) which optimises the material's configuration for a target application. While in-Materio processors could be configured using any external stimuli such as light (Viero et al, 2018) or radio waves (Linden, 2001), research often focuses on materials which can be interacted with via the application and reading of voltages. The electronic functionality of these EiM processors is not designed by the assembling of discrete components, rather an optimal material configuration is sought after and evolved through a supervised learning process.…”
Section: Introductionmentioning
confidence: 99%