Nine precipitation regimes over South China are obtained by applying the Self-Organizing Map (SOM) technique to the sub-daily precipitation during the pre-monsoon season (April to June) of 1979-2015. These nine regimes are distinct from each other in terms of precipitation amount and spatial pattern. The relationships between precipitation and different atmospheric dynamic and thermodynamic factors (large-scale divergence, water vapor flux, low-level jet, precipitable water, convective available potential energy (CAPE), and K index) are explored under the nine regimes. The upper-level divergence performs best in indicating the geographic positions of precipitation centers, which are also modulated by the orientations of low-level jets. The estimation of water vapor transport reveals that there are two major moisture sources for the precipitation during the pre-monsoon season, i.e., the Bay of Bengal (for all the nine regimes) and the South China Sea and West Pacific Ocean (for five regimes). Furthermore, the occurrence probability of more precipitation increases with the water vapor transported from the South China Sea and West Pacific Ocean. Compared to CAPE, K index performs better in indicating the precipitation centers and has a tighter relationship with area-average precipitation. The precipitable water exhibits complicated relationships with spatial patterns and amounts of precipitation, indicating that it may be not a good indicator for precipitation during pre-monsoon season over South China. Estimation of the persistence and transformation probabilities for precipitation regimes reveals that the persistence probabilities basically decrease with the precipitation amounts, and the transformations between different precipitation regimes are inclined to be associated with the southward shifts of precipitation centers.