In this study, detection and three-dimensional (3D) imaging of lightning plasma channels are presented using radar interferometry. Experiments were carried out in Leshan, China with a 48.2 MHz VHF radar configured with an interferometric antenna array. The typical characteristics of lightning echoes are studied in the form of amplitude, phase, and doppler spectra derived from the raw in-phase/quadrature (I/Q) data. In addition, the 3D structure of lightning channels is reconstructed using the interferometry technique. The localization results of lightning are verified with the locating results of lightning detection networks operating at VLF ranges, which indicate the feasibility of using VHF radar for lightning mapping. The interpretation of the observational results is complicated by the dendric structure of lightning channel and the overlap between passive electromagnetic radiations and return echoes. Nevertheless, some parts of the characteristics of lightning are still evident. The observational result of return echoes shows good consistency with the overdense assumption of lightning channels. The transition from the overdense channel to the underdense channel in the form of amplitude and phase is clearly observed. This technique is very promising to reveal the typical characteristics of lightning return echoes and structure of lightning propagation processes.