The article presents solutions to anomaly detection in network traffic for critical smart metering infrastructure, realized with the use of radio sensory network. The structure of the examined smart meter network and the key security aspects which have influence on the correct performance of an advanced metering infrastructure (possibility of passive and active cyberattacks) are described. An effective and quick anomaly detection method is proposed. At its initial stage, Cook's distance was used for detection and elimination of outlier observations. So prepared data was used to estimate standard statistical models based on exponential smoothing, that is, Brown's, Holt's, and Winters' models. To estimate possible fluctuations in forecasts of the implemented models, properly parameterized Bollinger Bands was used. Next, statistical relations between the estimated traffic model and its real variability were examined to detect abnormal behavior, which could indicate a cyberattack attempt. An update procedure of standard models in case there were significant real network traffic fluctuations was also proposed. The choice of optimal parameter values of statistical models was realized as forecast error minimization. The results confirmed efficiency of the presented method and accuracy of choice of the proper statistical model for the analyzed time series.