2022
DOI: 10.1007/978-3-031-19781-9_26
|View full text |Cite
|
Sign up to set email alerts
|

Lightweight Attentional Feature Fusion: A New Baseline for Text-to-Video Retrieval

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3
3

Relationship

0
6

Authors

Journals

citations
Cited by 23 publications
(1 citation statement)
references
References 36 publications
0
1
0
Order By: Relevance
“…Details are listed in the supplementary material. Following existing literature (Croitoru et al 2021;Li et al 2020Li et al , 2019Ge et al 2022;Hu et al 2022a;Luo et al 2022;Zhao et al 2022;Gorti et al 2022;Ma et al 2022;Xue et al 2023;Liu et al 2022), we report Recall@1 (R@1), Recall@5 (R@5), Recall@10 (R@10), and mean result of them (Mean) for comparison. We use FLOPs to evaluate efficiency for text-video similarity calculation, which is calculated by THOP 2 .…”
Section: Methodsmentioning
confidence: 99%
“…Details are listed in the supplementary material. Following existing literature (Croitoru et al 2021;Li et al 2020Li et al , 2019Ge et al 2022;Hu et al 2022a;Luo et al 2022;Zhao et al 2022;Gorti et al 2022;Ma et al 2022;Xue et al 2023;Liu et al 2022), we report Recall@1 (R@1), Recall@5 (R@5), Recall@10 (R@10), and mean result of them (Mean) for comparison. We use FLOPs to evaluate efficiency for text-video similarity calculation, which is calculated by THOP 2 .…”
Section: Methodsmentioning
confidence: 99%