2023
DOI: 10.56028/aetr.4.1.253.2023
|View full text |Cite
|
Sign up to set email alerts
|

Lightweight Human Pose Estimation Based on Self-Attention Mechanism

Abstract: To tackle the issues of numerous parameters, high computational complexity, and extended detection time prevalent in current human pose estimation network models, we have incorporated an hourglass structure to create a lightweight single-path network model, which has fewer parameters and a shorter computation time. To ensure model accuracy, we have implemented a window self-attention mechanism with a reduced parameter count. Additionally, we have redesigned this self-attention module to effectively extract loc… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 17 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?