2023
DOI: 10.1117/1.jei.32.3.033009
|View full text |Cite
|
Sign up to set email alerts
|

Lightweight image super-resolution reconstruction based on inverted residual attention network

Abstract: .In recent years, methods based on deep convolutional neural networks have made great progress in the field of image super-resolution reconstruction. However, mainstream approaches generally establish many network layers, leading to high computational costs and memory usage that are unsuitable for resource-limited edge devices. To alleviate this issue, a lightweight inverted residual attention network (IRAN) is proposed to obtain better super-resolution reconstruction performance with lower parameters and comp… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 40 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?